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Abstract. We calculate the contribution of pions to the q̄q-expectation value κ(ρ) = 〈M |q̄q|M〉 in sym-
metric nuclear matter. We employ exact pion propagator renormalized by nucleon-hole and isobar-hole
excitations. Conventional straightforward calculation leads to the “pion condensation” at unrealistically
small values of densities, causing even earlier restoration of chiral symmetry. This requires a self-consistent
approach, consisting in using the models, which include direct dependence of in-medium mass values on
κ(ρ), e.g. the Nambu–Jona-Lasinio–model. We show, that in the self-consistent approach the ρ-dependence
of the condensate is described by a smooth curve. The “pion condensate” point is removed to much higher
values of density. The chiral restoration does not take place at least while ρ < 2.8ρ0 with ρ0 being the
saturation value. Validity of our approach is limited by possible accumulation of heavier baryons (delta
isobars) in the ground state of nuclear matter. For the value of effective nucleon mass at the saturation
density we found m∗(ρ0) = 0.6m, consistent with nowadays results of other authors.

PACS. 13.75.Gx Pion-baryon interactions – 24.80.+y Nuclear tests of fundamental interactions and sym-
metries – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

In this paper we present the calculation of density depen-
dence of the scalar quark condensate κ = 〈M |q̄q|M〉 in
symmetric nuclear matter. The gas approximation [1] pro-
vides linear dependence, while account of interactions in
medium leads to nonlinear contributions. Although at nor-
mal density ρ0 the nonlinear corrections are rather small
[1] — [11], it is interesting to follow their behaviour while
the density increases.

We show, that the main contribution to nonlinear
terms comes from the interaction of the scalar quark op-
erator with the pion cloud. Thus we must average the
operator q̄q over in-medium pions.

Concrete calculation are carried out by use of Feynman
diagram technique (Fig. 1) with the pions described by
propagators, renormalized by interactions with medium.
The propagation of pions in medium is a special story, re-
lated closely to the problem of pion condensation [12],
[13]. The key point of the latter phenomena is that a
solution of dispersion equation with negative frequency
squared, ω2

c < 0 emerges at certain value ρc. This signals
the change in the structure of the ground state. The gen-
eral belief is that the phenomena does not take place up
to the values of about twice the normal density.

We show that the pion condensation is related to the
appearance of a new branch of the solutions of pion dis-
persion equation on the physical sheet of pion frequencies,

besides the well-known branches with pion quantum num-
bers (these are the pion, isobar and sound branches).

Fig. 1. a Diagrammatic representation of the interaction of
the operator q̄q (fat point) with the pion field. Straight line
denotes the nucleon; the wavy line stands for the pion, b,c
Diagrammatic expression for (13) with nucleon in the inter-
mediate state. Thick wavy line denotes the pion propagator
renormalized due to baryon-hole excitations in the framework
of TFFS, d,e Diagrammatic expression for (13) with ∆-isobar
(double solid line) in the intermediate state
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Account of the condensation singularity in the calcula-
tion of κ = 〈M |q̄q|M〉 leads to important physical conse-
quence: the value of κ turns to zero at the density values
smaller than ρc. Thus, while the density increases, the
chiral phase transition takes place earlier, than the pion
condensation does.

We show that the value of the critical density ρc (and
thus, the value of the density of the chiral phase transi-
tion) depends strongly on the magnitude of the effective
nucleon mass m∗ in medium. This happens because the
pion polarization operator Π is proportional to m∗, thus
entering the dispersion equation and propagator. The ef-
fective mass m∗ decreases while the density increases. The
decrease of m∗(ρ) causes the diminution of the polariza-
tion operator reflecting the weakening of the medium in-
fluence on the pions. This results in a shift of the point of
the pion condensation to a larger density.

However, assuming any of conventional nuclear physics
equations for in-medium mass m∗ with direct dependence
on the density, we find the chiral restoration point to be
dangerously close to the saturation value. This would re-
quire strong precursors of chiral restoration at normal den-
sities, in sharp contradiction to our knowledge. Thus, the
intermediate result of our paper is that straightforward
application of the pion nuclear physics to the calculation
of the scalar q̄q expectation value in the nuclear matter
leads to unphysical results. The problem is solved by self-
consistent treatment of the condensate and of hadron pa-
rameters.

Indeed, the expectation value of the quark condensate
in nuclear matter is calculated by Feynman diagrams tech-
nique. The expressions, corresponding to the diagrams,
include dependence on a number of in-medium hadron
parameters. These are nucleon and pion masses, the cou-
pling constant, the number of quark-antiquark pairs in
pion, etc. On the other hand, these in-medium charac-
teristics can be expressed through the averaged values of
quark (and gluon) operators in the framework of QCD
sum rules [1], or by using other models, e.g. Nambu–
Jona-Lasinio–model (NJL). Such models, combined with
the idea of scaling, developed by G.E.Brown and M.Rho
[14], [15] enable us to express the baryon effective masses
m∗, m∗∆ and pion decay constant f∗π , through in-medium
value of the quark condensate (m∗(κ), f∗π(κ)).

Thus, we solve the following system of equations:

κ = fκ(m∗, ...),
m∗ = fm(κ),

...

with the dots standing for other hadron parameters, de-
pending on κ. As a result, there appears a self-consistent
scheme for the calculation of the expectation value of
quark condensate κ and effective baryon mass m∗ in the
medium. The self-consistent calculation leads to a rapid
decrease of the effective nucleon mass with density. Thus,
there is no pion condensation at least up to the density
ρ = 2.8ρ0.

At larger densities ρ ≥ 2.8ρ0 the heavier baryons (iso-
bars) can be accumulated in nuclear matter, thus changing

the structure of its ground state. Therefore, the first phase
transition, which takes place while the density increases
is the condensation of heavier baryons in the ground state
of nuclear matter. If we neglect the new Fermi sea of iso-
bars, we find that κ approaches zero asymptotically, i.e.
at ρ→∞. Also, there is no pion condensation.

In the self-consistent approach the shape of ρ-
dependence of both functions m∗(ρ) and κ(ρ) does not
change much, while we modify the shape of the depen-
dence m∗(κ). Dependence of the values of m∗ and κ on
the values of parameters describing effective particle-hole
interactions and on those of form factors of the pion ver-
tices is also weak.

Scalar quark condensate

Investigation of the scalar condensate can be interesting
from several points of view. It may appear to be useful
in the attempts to find the bridge between description of
strong interactions in hadron and quark-gluon degrees of
freedom. Indeed, the condensate is determined through
quark degrees of freedom, depending, however on the val-
ues of hadron parameters. On the other hand, it describes
the properties of the matter as a whole. Being the order
parameter of the system, it characterizes the violation of
chiral symmetry. Its turning to zero leads to bright conse-
quences for the system as a whole 1.

Also, we hope that the developing of QCD sum rules
project started in [1] will provide the bridge between
the two ways of description, based either on hadronic or
quark degrees of freedom. By using the QCD sum rules,
the particle properties (mass, pole residue, etc.) can be
expressed through expectation values of the quark and
gluon operators. The scalar condensate q̄q is one of the
most important. The expectation values of the vector q̄γ0q
and scalar q̄q operators play the role of the vector and
scalar boson fields, in terms of the Quantum Hadrody-
namics (QHD) approach [16] in the mean field approxi-
mation. In this approximation the nuclear matter can be
considered as a medium with nonzero expectation value,
〈M |q̄γ0q|M〉 6= 0, and with a new value of scalar operator
〈M |q̄q|M〉, which is not equal to the vacuum one.

The value of the vector condensate 〈M |q̄γ0q|M〉 =
3〈M |N̄γ0N |M〉 = 3ρ does not depend on the choice of
degrees of freedom. The latter can be quark or hadronic as
well. This is due to the vector current conservation. Thus
in the latest equality ρ should be treated as the baryon
charge density. The density dependence of the scalar quark
condensate κ(ρ) = 〈M |q̄q|M〉 is more complicated. It is
the subject of the present paper.

1 On the other hand, turning of κ(ρ) = 〈|q̄q|〉 to zero may
be not sufficient for the chiral symmetry restoration. It is not
excluded that the expectation value〈M |q̄q|M〉 is equal to zero,
but simultaneously 〈M |q̄qq̄qq̄q|M〉 6= 0, etc. However in many
of the models used nowadays, e.g. NJL-model, the value 〈|q̄q|〉
may be considered as an order parameter, and the chiral sym-
metry violation does not take place, although 〈|q̄q|〉 turns to
zero
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Now we run through the main ideas and results of this
paper. In the gas approximation [1]

κ(ρ) = κ(0) + ρ〈N |q̄q|N〉, (1)

where κ(0) = 〈0|q̄q|0〉 ' −0.03 GeV3 is vacuum expecta-
tion, and the number of quarks in a nucleon,

〈N |q̄q|N〉 =
2σ

mu +md
,

is given by the well known πN σ-term: σ=45 MeV, mu

and md are the current quark masses.
In a number of papers [1] — [11] attempts were made

to go beyond the gas approximation

κ(ρ) = κ(0) + ρ〈N |q̄q|N〉+ S(ρ), (2)

with the nonlinear term S(ρ). This contribution comes
mainly from the pion exchange because of small pion mass
and large expectation value

η = 〈π|q̄q|π〉 =
2m2

π

mu +md
. (3)

Being a Goldstone meson, the pion describes the collective
mode, i.e. the excitation of the large number of q̄q-pairs.

The calculations of S(ρ) in one– and two–loop approx-
imations (i.e. with one– and two–pion exchanges) were
done in [1,9,11] 2. At low density the loop expansion is
equivalent to the expansion with respect to the Fermi mo-
mentum pF ∝ ρ1/3. Each extra loop gives an extra factor
ρ1/3(in the case mπ ¿ pF ).

Phase transition

At large densities, the different types of the phase transi-
tions can take place in nuclear matter before the quark-
gluon plasma formation. There is a number of possibilities:
i) new types of baryons (Λ, Σ, ∆) can appear in the
ground state of nuclear matter [17], when the energy of
the nucleon on the Fermi surface (εF = p2

F /2m) becomes
larger than the mass splitting ∆m = mB −m (B=Λ, Σ,
∆; m = mN ). More precise condition which takes the
baryon-hole interaction and the mass renormalization into
account will be discussed in Sect. 5 and in a separate pa-
per [18];
ii) chiral invariance will be restored, when κ(ρ) turns to
zero;
iii) the pion condensation [12] can take place.

Let us clarify the latest point. In nuclear medium a
pion can be absorbed, producing a free nucleon, or ∆, and
a hole. In next step the free baryon can emit a new pion
and go back filling up the hole. These transitions can be
interpreted as the pion interactions with the particle-hole
channels. Thus, instead of the free pion in vacuum one

2 Note that erroneous isotopic coefficient was used in [11].
So, the result for ϕ1 published in [11] should be multiplied by
3/4

deals with the mixture of the pion and baryon-hole states.
These pion– to baryon-hole transitions can be described
completely by the polarization operator Π(ω, k; ρ) in the
pion propagator D:

D =
1

ω2 −m2
π − k2 −Π(ω, k; ρ) + iε

. (4)

Here and below k = |k|. The dispersion equation

D−1 = ω2 −m2
π − k2 −Π(ω, k; ρ) = 0

has several solutions. While the density ρ increases, one of
the solutions, ωc(ρ), turns to zero. For the first time it hap-
pens at a critical density ρ = ρc for some concrete value
k = kc of pion momentum. At larger densities ρ > ρc,
the square of ωc is negative (ω2

c (ρ) < 0) in some interval
of values of k. In this case one has to add the pion-type
excitations into the ground state of the nuclear matter.
This phenomenon is called the pion condensation [12].

Since there is a large number of pions in the ground
state, large contribution to the expectation value κ(ρ) ap-
pears. Hence, the value of κ(ρ) changes near the point
ρ = ρc significantly. The pion condensation is the main
source of nonlinearity in the κ(ρ) behaviour.

〈|q̄q|〉 in the presence of “pion condensation”

The aim of this paper is to calculate the quark conden-
sate in the nuclear medium, with account of possible pion
condensation.

We will consider the simplest (one-loop) approxima-
tion (Fig. 1) but with the exact (renormalized) pion prop-
agator (see (4)) including geometrical series of baryon-hole
insertions.

Of course, this is not the whole set of Feynman graphs,
but it describes and includes all the main physical effects
we would like to discuss. The short-range interactions will
be taken into account in terms of the Theory of the Fi-
nite Fermi System (TFFS) [19], by using the effective
constants g′NN , g′N∆, g′∆∆ corresponding to nucleon and
∆-isobar rescatterings. On the other hand, the long-range
correlations are described by the exact pion propagator.

Note that in the limit of a small pion-nucleon coupling,
our approach reproduces exactly the one-loop result [1],
[3] and the most important part of the 2-loop calculations
[11].

If the nucleons are treated in nonrelativistic limit, the
value of polarization operator, accounting the baryon-
hole loop is proportional to the coupling constant g∗A/f

∗
π

squared and to the nucleon effective mass m∗:

Π(ω, k; ρ) ∝
(
g∗A
f∗π

)2

m∗pF k
2, (5)

where m∗, g∗A and f∗π are the nucleon mass, axial current
and pion coupling in medium, correspondingly. Here and
below all effective variables, renormalized in the nuclear



174 E.G.Drukarev et al.: Self-consistent treatment of the quark condensate and hadrons in nuclear matter

medium, are supplied with an asterisk. The Fermi momen-
tum pF ∝ ρ1/3, and for symmetric nuclear matter

ρ =
4

(2π)3

∫ pF

d3k.

Factor pFm∗ comes from the integration of the energy
denominator, with ∆E ∼ k2/2m∗:∫ pF d3k

∆E
∼ m∗pF .

Thus, to calculate the true value of quark condensate
κ(ρ) one has to know the ρ-dependence of the baryon mass
m∗(ρ) and that of the coupling constant g∗A/f

∗
π . The sim-

plest possibilities are to use either the Landau formula
[20]

m∗

m
=

1
1 + 2mpF

π2 f1

, (6)

or the Walecka-type model [16], where in nonrelativistic
limit

m∗ = m− cρ (7)
with certain constant coefficients f1 and c.

Using (6) or (7), one obtains the pion propagator pole
at ω = ωc(ρ) with ω2

c ≤ 0 for the densities ρ ≥ ρc. The
value of critical density ρc turns to be of the order of the
saturation one.

Say, the value, obtained in the papers [13], [21], is
ρc ∼ (1.0 − 1.5)ρ0. The appearance of such a pole was
interpreted as the signal of “pion condensation” [12].

However, just before the “condensation” (at ρ < ρc)
the nonlinear contribution S(ρ) increases drastically, and
the curve κ(ρ) crosses the zero line. The reason is trivial.
When ρ→ ρc, the integral for the pion loop (Fig. 1) takes
the form

S ∼
∫

dωd3k

(ω2 − ω2
c (ρ, k))2

(here we keep the singular part of integrand only and take
into account the symmetry of pion propagator in respect
to the sign of ω). The integral diverges near the conden-
sation point ωc(ρc, k) ' a · (k − kc)2 → 0 for k → kc 6= 0:∫

dωk2
cd(k − kc)

(ω2 − a2(k − kc)4)2
→∞.

This means that one faces another phase transition.
Namely, the chiral symmetry restoration is reached before
the pion condensation. At larger densities the pion does
not exist any more as a collective Goldstone degree of free-
dom, the baryon mass vanishes (if very small contribution
of the current quark masses is neglected), and we have to
stop our calculations based on the selected set of Feynman
diagrams (Fig. 1) with exact pion propagator.

The structure of pion propagator singularities, vari-
ous branches of solutions of dispersion equation and cal-
culation of the quark condensate κ(ρ) under the assump-
tions described by Eqs. (6) or (7) with the coupling g∗A/f

∗
π

= gA/fπ = const are described in Sect. 2, 3, 4.
With conventional values of TFFS constants (fπ, f1,

g′NN ,...) we obtain κ(ρ) = 0 at rather small densities ρ ∼
(1.1÷ 1.2)ρ0. This does not look to be realistic.

Self-consistent approach

Therefore, we consider another approach, which is a self-
consistent one. We obtain the expression for quark con-
densate κ which depends on nuclear density, on effective
mass m∗, on the effective constant f∗π , etc. On the other
hand, the effective (renormalized) values of m∗, f∗π ... de-
pend on κ.

Recall, for example, that in the framework of QCD
sum rules the baryon mass is determined mainly by the
q̄q-expectation value. The relation between the mass and
κ(ρ) is even more straightforward in the NJL-model. The
nucleon (and constituent quark) mass is proportional to
κ, and in medium one finds

m∗(ρ) = G · κ(ρ), (8)

where G is the constant of the four-fermion interaction.
Thus, in order to perform self-consistent calculations, we
have to solve the set of equations

κ = Fκ(ρ,m∗(ρ), f∗π(ρ), ..)
= κ(0) + ρ〈N |q̄q|N〉+ S(ρ), (9)

m∗(ρ)
m

= Fm(κ, ρ),

f∗π(ρ)
fπ

= Fπ(κ, ρ).

In Sect. 5 we use (9), combined with a hypothesis about
g∗A/f

∗
π behaviour, and calculate the expectation κ(ρ). Two

types of behaviour of the ratio g∗A/f
∗
π are considered:

1). g∗A/f
∗
π =gA/fπ =const, which is the latest version of

Brown-Rho scaling [15]; and 2). g∗A = gA; f∗π/fπ = m∗/m
[14].

Here is our main result. For g∗A/f
∗
π =const and

m∗(ρ)
m

= Fm, Fm =
κ(ρ)
κ(0)

,

we get rather smooth κ(ρ) dependence. The system tries to
prevent the chiral symmetry restoration at low densities:
the ratio κ(ρ)/κ(0) ≥ 0.2 up to ρ ∼ 2.5ρ0 (κ(ρ0)/κ(0) =
0.55).

To study the stability of the results we consider several
other possibilities of m∗(ρ) dependence. These are:

m∗(ρ)
m

=
(
κ(ρ)
κ(0)

)1/3

,

and QCD sum rules motivated formula [22]

m∗(ρ)
m

=
κ(ρ)
κ(0)

− 2.4ρ
κ(0)

. (10)

with the second term caused by vector condensate. All
the versions with g∗A/f

∗
π=const show the same qualita-

tive behaviour. On the contrary, for g∗A = const 3 and

3 As was mentioned in [14], the low density evolution from
gA(0) = 1.25 to gA(ρ0) = 1 has a special explanation
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f∗π/fπ= m∗/m we reach the critical point κ(ρ) = 0 at
a very small value of Fermi momentum pF ' 200 MeV
(ρ < ρ0/2), since in this case the polarization operator
increases while |κ| decreases (Π ∝ m∗/f∗2π ∝ 1/κ). The
vanishing of the q̄q-expectation value at ρ ∼ ρ0/2 does
not take place in the Nature. Hence, we have to reject
this possibility.

Note that in the present paper we ignore the strange
sector, but even in non-strange sector new baryons (∆-
isobars) appear in the ground state of nuclear matter at
larger densities. Thus, we cannot continue calculations at
ρ > (2.5− 3.0)ρ0, before the reconstruction of the ground
state is carried out.

Since for moderate densities ρ ∼ 2ρ0 the effective mass
of nucleon m∗ becomes comparable with the Fermi mo-
mentum pF , we account for relativistic kinematics of nu-
cleons. In this case we obtained reasonable values of ef-
fective nucleon mass m∗(ρ0) = 0.6m and of the scalar
condensate κ(ρ0) = 0.6κ(0) for normal nuclear density ρ0.

2 The main equations

The lowest order contribution to the quark condensate
beyond the gas approximation is provided by the nucleon
self-energy graph shown in Fig. 1, with both nucleon and
∆-isobar contributing to the intermediate state. In vac-
uum all intermediate nucleon momenta p2 ≥ 0 are avail-
able, but in medium the momenta p2 > pF are allowed
only, because of Pauli principle (see Fig. 1). Besides, the
pion in-medium propagator should be renormalized; this
is shown in Figs. 1b,d by fat wavy line. Therefore, we cal-
culate the contribution of the diagrams, shown in Figs.
1b,d subtracting analogous vacuum contributions with
bare (vacuum) pion propagator (Figs. 1c,e).

From formal point of view, κ(ρ) can be calculated as
the derivative of the energy density E with respect to the
current quark mass [2]:

κ(ρ) = ∂E/∂mq. (11)

The pion-induced part comes from the differentiation of
the nucleon self-energy ΣN , which corresponds to the di-
agram of Fig. 1a

Sπ(ρ) = ρ
∂ΣN
∂m2

π

· ∂m
2
π

∂mq
,

where the derivative
∂

∂m2
π

1
(ω2 −m2

π − k2 −Π)
=

1
(ω2 −m2

π − k2 −Π)2

squares pion propagator, and

∂m2
π

∂mq
=
m2
π

mq
= η/2.

Here η is the number of q̄q-pairs in pion (3). We use linear
PCAC equation for the pion mass squared m2

π, obtained
by Gell-Mann, Oakes and Renner (GMOR) [23]:

m2
π = −〈|q̄q|〉(mu +md)

2f2
π

. (12)

In the Feynman graph of Fig. 1, the q̄q operator is shown
by the fat black point which i) stands for the pion prop-
agator squared, and ii) multiplies the result by the factor
η.

Note that we average the operator q̄q over the pion
states but not over intermediate baryon states. Due to
the Ward identity, which corresponds here to the baryon
number conservation, all the contributions containing
〈N |q̄q|N〉 for the πN intermediate state are already ac-
counted for by the second term in (2).

From technical point of view, this is supported by the
following argument. For the nucleon in the matter the con-
densate 〈N |q̄q|N〉m can be presented as

〈N |q̄q|N〉m = 〈Nm|q̄q|Nm〉+ 〈N |q̄q|N〉
(
−∂ΣN
∂E

)
.

Here |N〉 is free nucleon state and |Nm〉 is in-medium nu-
cleon one with energy E; ΣN is the self-energy. Using the
multiplicative character of renormalization

|Nm〉 = Z1/2|N〉, ∂ΣN
∂E

= Z − 1,

we find 〈N |q̄q|N〉m = 〈N |q̄q|N〉, thus proving our assump-
tion.

For ∆-baryons (Fig. 1), we deal with the contributions
proportional to the difference

δ = 〈∆|q̄q|∆〉 − 〈N |q̄q|N〉.

Basing on the Additive Quark Model (AQM), we assume
that δ = 0. Thus we take into account only the pion con-
tribution to κ(ρ).

Certainly, in the strong interactions, there is no rea-
sonable parameter for perturbative series. We consider the
first (one-loop) self-energy diagram of Fig. 1 with full (ex-
act) pion propagator instead. In other words, we sum up
the selected set of Feynman graphs which are responsible
for the lowest singularity in the ρ-dependence of κ(ρ). The
expression for SN (ρ), illustrated by Figs. 1b,c is:

SN (ρ) = −3ηSp
∫

d3p

(2π)3

dωd3k

(2π)4i
(13)

(
Γ 2
πNND

2(ω, k)θ(pF − p)
θ(|p− k| − pF )

ε(p)− ω − ε(p− k) + iδ

−Γ 02
πNND

2
0(ω, k)θ(pF − p)

1
ε(p)− ω − ε(p− k) + iδ

)
.

Here Sp stands for summation over the nucleon spin in-
dices, the factor 3 comes from the summation over isotopic
coefficients and the last term is needed to avoid the double
counting and subtract the contribution which is already
included into 〈N |q̄q|N〉 in the second term of (2), which
is related to the bare nucleon in vacuum. Recall that
ρ = 2p3

F /3π
2. We must add similar contribution of in-

termediate isobar, illustrated by the diagram of Fig. 1d.
The free pion propagator is

D0 = (ω2 − k2 −m2
π + iδ)−1.
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The πNB vertex with B labeling nucleon or ∆-isobar is

ΓπNB = Γ
(0)
πNB · dB(k) · xπNB , (14)

while

Γ
(0)
πNN =

gA√
2fπ

ψ̄γµγ5ψkµ =
igA√
2fπ

χ∗(σk)χ, (15)

with ψ(χ) being the (non)relativistic nucleon four- (two-)
spinors. In order to take into account the nonzero baryon
sizes, the bare vertex Γ (0) is multiplied by the form factor
taken in a simple pole form

dB =
1−m2

π/Λ
2
B

1 + k2/Λ2
B

,

ΛN=0.667 GeV, while Λ∆=1.0 GeV [24]. The factors
xπNN and xπN∆ are accounting for the renormalization of
the corresponding vertices due to the particle-hole pairs.
Explicit expressions for them will be given later on (see
(27)).

The expression, corresponding to the diagram of Fig.
1d with ∆-baryon is analogous to (13). However, the un-
renormalized vertex is now

Γ
(0)
πN∆ = f∆/N

igA√
2fπ

χ∗(S+
αk)χα. (16)

The experiments provide the value of the coupling con-
stant f∆/N ' 2 [24], while AQM calculations give f∆/N '
1.7.
Certainly, there are no limits for momenta of isobars in
the intermediate states. Mass difference ∆m = m∆−m is
included into the of ∆-baryon energy ε(p− k).

We assume that the baryon-medium interactions
change the potential energy of any baryon (nucleon or
∆-isobar) by the same value, which does not depend on
the baryon momentum p. This is consistent with QHD
picture in the mean field approximation, under the as-
sumption that the vector field has the same coupling to
nucleon and ∆-baryon. In other words, AQM is assumed
to describe the vector field interaction with baryon.

Note that only nonrelativistic approximation for the
baryon propagator is used in Sects. 2–5. In Sect. 6, to
estimate relativistic effects at large densities (when the
Fermi momentum pF becomes comparable with effec-
tive mass m∗) we use traditional perturbative approach,
with all particles on the mass shell. Still, we neglect the
contribution from badly time-ordered graphs, where the
antibaryon-baryon pairs are created.

Therefore, the only relativistic effect (Sect. 6) is a rel-
ativistic expression for ε(p) in the denominator of (13):

εp =
√

(m∗2 + p2).

Now we construct the pion propagator in nuclear mat-
ter. According to TFFS, we have to sum up the geometric
series of baryon-hole loops shown in Fig. 2a. The contri-

bution of one loop, illustrated by first diagrams in Figs.
2b,c are

Π
(0)
N = Sp

∫
d3p

(2π)3
Γ 2
πNNGN (p+ k)

× θ(|p+ k| − pF )θ(pF − p), (17)

Π
(0)
∆ = Sp

∫
d3p

(2π)3
Γ 2
πN∆G∆(p+ k)θ(pF − p). (18)

Here the traces are taken over spin and isospin variables,
and GN , G∆ are nucleon and ∆-isobar propagators.

In the described perturbative series for the baryon-hole
loop, we consider both particle-hole excitation and ab-
sorption contributions (the first and the second diagrams,
correspondingly, in Figs. 2b,c)

Fig. 2. a Full pion propagator in the medium (thick wavy
line) equal to the sum of the geometrical series of the nucleon-
hole and isobar-hole excitations, b Polarization operator of the
pion, Π0

N , consists of two terms corresponding to excitation
and absorption of the nucleon-hole pair, c Pion polarization
operator,Π0

∆, consists of two terms corresponding to excitation
and absorption of the isobar-hole pair. Thin wavy line denotes
a free pion, solid line with left arrow is a hole, solid line with
right arrow denotes a nucleon, double line is ∆-isobar
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Thus,

Π0
N = −4

(
g∗A√
2f∗π

)2

k2

×
[
ΦN (ω,k) + ΦN (−ω,−k)

]
d2
N (k), (19)

Π0
∆ = −16

9

(
g∗A√
2f∗π

)2

f2
∆/Nk

2

× [Φ∆(ω,k) + Φ∆(−ω,−k)] d2
∆(k), (20)

with Migdal’s function

Φ∆(ω, k) =
1

4π2

m∗3

k3

[
a2 − b2

2
ln(

a+ b

a− b )− ab
]
. (21)

Here a = ω−k2/2m∗−∆m, b = kpF /m
∗, and Re(∆m) =

m∆ −m, Im(∆m) = −Γ∆/2; Γ∆ is the isobar width.
Integration over the momenta p provides

ΦN (ω, k) =
m∗

k

1
4π2

(−ωm∗ + kpF
2

+
(kpF )2 − (ωm∗ − k2/2)2

2k2

× ln(
ωm∗ − kpF − k2/2
ωm∗ − kpF + k2/2

)

−ωm∗ ln(
ωm∗

ωm∗ − kpF + k2/2
)
)
, (22)

at 0 ≤ k ≤ 2pF , while

ΦN (ω, k) =
m∗

k

1
4π2

(
− pF

k
(ωm∗ − k2/2)

+
(kpF )2 − (ωm∗ − k2/2)2

2k2

× ln(
ωm∗ − kpF − k2/2
ωm∗ + kpF − k2/2

)
)

(23)

at 2pF ≤ k ≤ ∞.
Note that (22) but not the sum (19) differs from anal-

ogous equation of [13], [24] at k ≤ 2pF . The short-range
correlations originated from the baryon-hole rescattering
are described in terms of TFFS with the help of effective
constants g′NN , g′N∆, g′∆∆, which correspond to N-N, N-∆
and ∆-∆ rescatterings. If it is not specially mentioned, we
use g′NN=1.0, g′N∆=0.2, g′∆∆=0.8 [13]. After summation
of the geometrical series of baryon-hole loops, we obtain
the polarization operator [13], [25]

Π(ω, k; ρ) = ΠN +Π∆,

with

ΠN = Π0
N (1 + (γ∆ − γ∆∆)

Π0
∆

k2
)/E, (24)

Π∆ = Π0
∆(1 + (γ∆ − γNN )

Π0
N

k2
)/E. (25)

Denominator E has the form

E = 1− γNN
Π0
N

k2
− γ∆∆

Π0
∆

k2

+ (γNNγ∆∆ − γ2
∆)
Π0
NNΠ

0
∆

k4
. (26)

The effective constants γ are related to g′, as follows:

γNN = C0g
′
NN

(√
2f∗π
g∗A

)2

,

γ∆ =
C0g

′
N∆

f∆/N

(√
2f∗π
g∗A

)2

,

γ∆∆ =
C0g

′
∆∆

f2
∆/N

(√
2f∗π
g∗A

)2

,

where C0 is the normalization factor for the effective
particle-hole interaction in the nuclear matter [13]

C0 =
π2

pFm∗
.

The vertex renormalization factors introduced in (14)
are

xπNN = (1 + (γ∆ − γ∆∆)
Π0
∆

k2
)/E,

xπN∆ = (1 + (γ∆ − γNN )
Π0
N

k2
)/E. (27)

3 Singularities of the pion propagator

We start with the cuts corresponding to singularities of
the polarization operator Π. In the complex ω-plane, the
nucleon-hole state induces logarithmic cuts on the real
axis. As one can see from Eqs. (22-23), Π0

N has two cuts
at positive ω in the interval 0 ≤ k ≤ 2pF

1) 0 ≤ ω ≤ kpF
m
− k2

2m
, (28)

2)
kpF
m
− k2

2m
≤ ω ≤ kpF

m
+

k2

2m
, (29)

while for large k ≥ 2pF we have one cut only:

−kpF
m

+
k2

2m
≤ ω ≤ kpF

m
+

k2

2m
. (30)

The cut caused by the ∆-hole state lays below the real
axis (for Re ω > 0) at

k2

2m
+∆m− kpF

m
≤ ω ≤ k2

2m
+∆m+

kpF
m

, (31)

with Im ω = −Γ∆/2.
Besides, there are symmetric cuts at Re ω < 0. The

complete structure of the cuts of polarization operator is
shown in Fig. 3.
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Fig. 3. Positions of singularities of the polarization
operator Π in the ω-plane (represented at pF = pF0

and k = mπ). On the right half-plane ω/mπ, in
the interval ω/mπ = 0.0 ÷ 0.26, there is the first
logarithmic cut of the Π0

N -function, see (28). Mov-
ing after thin arrow from the physical sheet across
the first cut, we continue the movement on the up-
per logarithmic sheet (thick arrow). In the interval
ω/mπ = 0.26 ÷ 0.45 there is the second logarithmic
cut of Π0

N , see (29). In this case, following the thin
arrow across the second cut we come to the lower
logarithmic sheet (dashed arrow). Logarithmic cut of
the Π0

∆-function is located at Re ω/mπ = 1.82÷ 2.54
and Im ω = −Γ∆/2 = −0.115/2 GeV. Since Π0

N and
Π0
∆ are symmetrical in ω ↔ −ω permutation (19),

(20), there are symmetrical cuts on the left half-plane
ω/mπ

To make the picture more visual we start with fixed
Γ∆=115 MeV equal to the width of ∆-isobar in vacuum.
On the other hand, the values of ω which are important in
our integrals are rather small, and practically there is no
phase space for the decay ∆→ πN in the medium. Thus,
the ∆-isobar width in the medium is Γ ∗∆ ' 0. Therefore,
in final computations we put Γ ∗∆ = 0.

Another set of singularities is provided by the poles of
the total pion propagator, i.e. by solutions of the disper-
sion equation

D−1 = ω2 − k2 −m∗2π −Π(ω, k; ρ) = 0, (32)

m∗π denotes in-medium value of the pion mass, which is
equal to

m∗2π = m2
π +Πs

with the scalar polarization operatorΠs describing S-wave
pion-nucleon rescattering. The polarization operator, pro-
vided by (24), (25), accounts for the P-waves only. For the
analysis, carried out in this Section it is sufficient to use
the gas approximation equation

Πs = −ρ 〈N |q̄q|N〉(mu +md)
2f2
π

.

while in later analysis we use GMOR expression (12) for
m∗π and modify the value of fπ as well.

Starting analysis of (32) from small values of densities
(ρ ≤ ρ0) we find three branches of its solution on the
physical sheet.

3.1 The pion branch ωπ(k)

At k → 0 it starts at ω = ±
√
m∗2π leaving the physical

sheet through the cut of Π0
∆. For example, this takes place

at k ' 4mπ, when pF=290 MeV. Hence, at large momenta
one deals with the ∆-hole excitations instead of pion’s
ones.

3.2 The sound branch ωs(k)

It is a slightly changed solution of the equation E = 0
(see (26)). At very small momenta k the admixture of
other branches is tiny and the change is negligible. As it
should be for the sound wave, ωs = const · k for small k.
At k ' 0.43mπ (at pF=290 MeV) this branch leaves for
the lower sheet through the second cut of Π0

N (see (29)).
At k > 0.43mπ this solution is on the second unphysical
sheet of the complex ω-plane.

3.3 The isobar branch ω∆(k)

It is mainly the ∆-hole sound wave. Starting at
Re(ω∆(k = 0)) = m∆ − m, Im(ω∆(k = 0)) = −Γ∆/2,
it plunges under the isobar Π0

∆ cut (at k = 3.8mπ, when
pF=290 MeV).

3.4 The “condensate” branch ωc(k)

This solution comes to the physical sheet through the first
cut of Π0

N at pF > 283 MeV/c. The “trajectories” of the
solution are shown in Fig. 4 for different values of pF and
of Γ∆. The part which is in the upper half-plane (Im ω >
0) corresponds to the unphysical sheet. For small pF ≤ 283
MeV all the trajectory is placed on the unphysical sheet,
but at larger pF it comes down to the physical sheet. Say,
for pF=300 MeV (360 MeV) the solution is on the physical
sheet at k/mπ = 1.06÷2.60 (k/mπ = 0.36÷3.91). This is
illustrated by Fig. 4b. In Fig. 4a one can see that the real
part of ωc(k) decreases with Γ∆ tending to zero, when
ωc(k) is on the physical sheet. For Γ∆ = 0 the solution
goes along the negative imaginary axis. Of course, here
ω2
c (k) < 0. Thus this is the singularity responsible for the

so-called “pion condensation” [12].
We have several reasons to put the latest words in

the quotation marks. To start with, this is not the pion
branch (ωπ), but another one. It starts at k = 0 at the
same point as the pion branch ωπ does: ωπ(k = 0) =
m∗π. However, it goes to the other sheet. Note also, that
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Fig. 4. a, b. The condensate branch ωc(k)/mπ. a ωc(k) is pre-
sented at pF = pF0 for isobar widths values Γ∆= 0.001, 0.01,
0.05, 0.115 GeV (curves 1,2,3,4, correspondingly). Solid lines
are disposed on the upper (unphysical) sheet of the first log-
arithmic Π0

N cut. Continuation of this branch to the physical
sheet is displayed by dashed curves. All curves begin at k = 0
in the point ω = m∗π = 0.80mπ (32). b ωc(k) is shown at Γ∆=
0.115 GeV for different values of Fermi momenta pF=280, 290,
300, 360 MeV (curves 1, 2, 3, 4, correspondingly). For curves
3 and 4, the part of ωc(k) on the physical sheet is drawn only.
The curve 1 for pF=280MeV is completely on the unphysical
sheet

while Re ωc > 0, the imaginary part of the solution is
negative everywhere on the physical sheet. This means
that we never face the mode with Im ωi > 0. In other
words, there is no “accumulation of pions”, contrary to
the naive understanding of condensation.

Of course, there are singularities with Im ωi > 0 in the
left half-plane of ω. However, these singularities originate
from the inverse time-ordered graphs of Fig. 2c. They are
caused by the terms Φ(−ω,−k) in (19), (20). These singu-
larities correspond to “antiparticles” and do not describe
solutions which grow with time.

Nevertheless, the fact that even for Γ∆ = 0 one obtains
a nonzero imaginary part Im ωc 6= 0 and ω2

c < 0 signals
on certain instability of the solution. When ω2

i turns to
zero (for any k = kc) at certain ρ = ρc, the ground state

should be reconstructed. New components, like baryon-
hole excitations (with the pion quantum numbers) emerge
in the ground state of nuclear matter. Thus, we cannot use
the same approach at larger values of ρ > ρc.

Thus, the appearance of the singularity ω2
c = 0 on the

physical sheet shows, that phase transition takes place in
the nuclear matter.

We have to emphasize that in all calculations here and
below we use the Landau effective mass (6) with the coef-
ficient f1, which gives m∗(ρ0) = 0.8m; then g∗A = 1.0 and
f∗π = fπ = 92 MeV. The mass splitting ∆m = m∗∆−m∗ =
const with Re∆ = 292 MeV. The values of TFFS effec-
tive constants are g′NN = 1.0, g′N∆ = 0.2, g′∆∆ = 0.8. The
constant in the πN∆-vertex (16) is f∆/N = 2.

The dependence of the concrete values of ωi(k) on
the values of TFFS constants g′NN , g′N∆, and g′∆∆, be-
ing changed in reasonable limits, is weak. We can say the
same about the dependence on the value of the coupling
constant f∆/N . The whole picture is more sensitive to the
values of effective mass m∗ and to that pion-baryon cou-
pling g∗A/f

∗
π . This will be the subject of the analysis car-

ried out in next sections.

4 Pion contribution to the quark condensate

In order to carry out integration over ω in the integral
in right hand side of (13), we specify the integration con-
tour in complex plane. The contour should go below the
pion propagator singularities in the left half-plane ω and
above the singularities in the right one. We have chosen a
straight line Im ω = a · Re ω with a slope a ≤ 1. Since
the Cauchy integral is convergent, the result of integration
does not depend on the slope value a, that is proved by
our computations.

The results of calculation of the function S(ρ), defined
by (2), (13) are shown in Fig. 5. For the sake of conve-
nience, we display the ratio

κ(ρ)
|κ(0)| = −1 + ρ

〈N |q̄q|N〉
|κ(0)| +

S(ρ)
|κ(0)| . (2.1)

The most interesting events take place at pF between
270 MeV and 320 MeV. The large change of the values
of S(ρ) is due to the “pion condensation” singularity ωc,
coming to the physical sheet very close to the integration
contour at pF = 283 MeV.

Figure 5a illustrates the weak dependence of the be-
haviour of the function S(ρ) on the values of TFFS pa-
rameters and on that of f∆/N .

The value of the width of ∆-isobar is much more
important. At smaller Γ∆ the resonance-like structure
becomes more pronounced (see Fig. 5b). The peak be-
comes higher and more narrow. At Γ∆ → 0 the poles at
ω = ωc(k) pinch the contour at ωc(kc) = 0, kc 6= 0 leading
to the infinite value of S(ρ), when the “pion condensate”
singularity emerges for the first time on the physical sheet
at ωc = 0. Recall that namely zero value of Γ∆ is expected
in nuclear medium for small ω.
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Fig. 5. The function S/|κ(0)|. a Dependence of S/|κ(0)| on
the variation of nuclear parameters. Solid curve represents the
main result obtained with g′NN = 1.0, g′N∆ = 0.2, g′∆∆ = 0.8,
fπN∆ = 2.0, Γ∆ = 0.115 GeV; the other parameters are de-
scribed at the end of Sect. 3. Dashed curve corresponds to
the calculation with fπN∆ = 1.7, dotted curve to g′∆∆=1.2,
dot-dashed curve to g′NN = 0.7, b Dependence of S/|κ(0)|
on the isobar width. Solid curve represents the main result
(Γ∆ = 0.115 GeV). Dotted curve corresponds to the calcula-
tion with Γ∆ = 0.07 GeV, dot-dashed curve to Γ∆ = 0.05 GeV,
dashed curve to Γ∆ = 0.01 GeV, c Dependence of S/|κ(0)| on
the behaviour type of m∗(ρ). Solid curve stands for the re-
sult with m∗ provided by Landau equation (6) (m∗(ρ = ρ0) =
0.8m). Dashed curve corresponds to Walecka equation (7) for
m∗ (m∗(ρ = ρ0) = 0.8m). Dot-dashed curve is obtained in
framework of Walecka model, with m∗(ρ = ρ0) = 0.7m

However, as is was discussed in the Introduction, be-
fore the pole at ω = ωc (at ρ = ρc) reaches the physical
sheet, S(ρ) becomes so large that it cancels the negative
vacuum expectation value κ(0) ' −0.03 GeV3, and the
whole scalar quark condensate turns to zero. The van-
ishing of the scalar quark condensate indicates the chiral
invariance restoration, and after that one has to deal with
quite another system, i.e. with another phase of the nu-
clear matter.

The prediction of chiral phase transition at rather low
values of ρ (close to normal nuclear density ρ0) looks too

strong. On the other hand, the results are stable enough
and do not change too much under the variation of TFFS
parameters and that of f∆/N . These statements are true
for both considered types of behaviour of nucleon effec-
tive masses. However, the dependence on the numerical
values of the coefficient which enter (6), (7) is strong.
The coefficient can be fixed by the choice of the value of
m∗(ρ0). The results for m∗(ρ0) = 0.8m and for m∗(ρ0) =
0.7m are compared in Fig. 5c. In the latter case, for the
smaller effective mass, the phase transition takes place at
pF ' 320 MeV, i.e. at larger values of density.

5 Self-consistent approach

5.1 Assumptions on the density behaviour of hadron
parameters

As we showed above, the phase transition (either “pion
condensation” or chiral symmetry restoration) density
value depends strongly on the value of baryon effective
mass m∗. On the other hand, in the framework of com-
monly used models the hadron mass depends mainly on
the scalar quark condensate κ(ρ). This problem should be
solved self-consistently.

Of course, it would be nice to calculate all the masses
(m∗, m∗∆, m∗π) and constants (g∗A, f∗π ,..) with the help of
QCD sum rules, substituting them in the next step into
our expression for κ(ρ), solving the equation

κ = κ(ρ,m∗(ρ, κ), f∗π(ρ, κ), ...) (33)

in the final step. Unfortunately, it is not so easy. One of the
main obstacles is that the masses and hadron constants
depend not on the value of the scalar quark condensate
only but on the in-medium expectation values of other
operators (usually, more complicated ones) as well.

Therefore, we use simplified scenario of the κ depen-
dence of the mass m∗ and of the other parameters in-
volved.

Fortunately, there are model-independent equations.
The GMOR relation can be generalized to the case of finite
density due to PCAC:

m∗2π = −κ(ρ)
2f∗2π

(mu +md). (34)

Also, due to chirality, the number of quark-antiquark pairs
inside pion is

η∗ =
2m∗2π

(mu +md)
. (35)

Now we come to model-dependent relations. Denote the
ratios

α(ρ) =
m∗

m
, β(ρ) =

fπ
f∗π
. (36)

In the NJL-model [14],

α(ρ) =
κ(ρ)
κ(0)

. (37)
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In order to check the stability of our result, we perform
the calculations using two more types of κ-dependence of
α:

α(ρ) =
(
κ(ρ)
κ(0)

)1/3

. (38)

This latter expression can be justified by the dimensional
counting, if there is only one dimensional parameter. Un-
fortunately, in our case, this argument does not work, since
there are at least two external dimensional parameters ρ
and ΛQCD,

Another expression for α(ρ) is motivated by the QCD
sum rules analysis [22]:

α(ρ) =
κ(ρ)
κ(0)

− 2.4ρ
κ(0)

(39)

with the last term in the right hand side caused by the
vector condensate.

Now we discuss the in-medium behaviour of pion decay
constant f∗π , which is proportional to the pion radius in-
verted, i.e. fπ ∝

√
Nc/rπ [26]. In the NJL-model near the

phase transition point (κ → 0), the pion radius increases
unlimitedly, and fπ → 0 when κ = 〈|q̄q|〉 → 0. Thus, it
looks natural to assume that

f∗π
fπ

=
m∗

m
.

Brown and Rho [14] made even stronger hypothesis
assuming that all the parameters of the same dimension
are proportional to each other

m∗

m
=
m∗∆
m∆

=
f∗π
fπ
... = α(ρ), i.e. β =

1
α
, (40)

while the dimensionless parameters do not change in nu-
clear medium; in particular, (see footnote 3)

g∗A = gA = const.

The second, alternative hypothesis is based on the idea
of confinement. If the deconfinement phase transition does
not take place simultaneously with the chiral invariance
restoration, the pion radius should be limited and f∗π has
a nonzero value when we approach the chiral transition
point. Therefore, we consider below another limiting pos-
sibility:

f∗π = fπ, i.e. β = 1. (41)
In the present calculations we have fixed the value of the
axial coupling constant, g∗A = 1. The most important
parameter in our calculation is the ratio g∗A/f

∗
π (see (5),

(19), (20)). Thus, just as in the latest version of Brown-
Rho scaling [15], g∗A/f

∗
π = const, i.e. does not depend on

ρ.
Note that both hypotheses, described by (40), (41)

are consistent with the QCD sum rules for pion [27],
which can be generalized for the case of finite density in
a straightforward way (the proof will be published else-
where):

π

2

(
f∗πm

∗2
π

mu +md

)2

=
3W ∗40

32π

(
αs(W ∗20 )
αs(µ)

)8/b

+
π

16

〈αs
π
G2
µν

〉
. (42)

Here W ∗0 is the continuous threshold value, i.e. the mini-
mal energy of the multihadronic states with pion quantum
numbers; αs is the QCD coupling and G2

µν is the gluon
field squared.

Neglecting the last (numerically small) term and
anomalous dimension (i.e. putting αs(W 2

0 ) =αs(µ)), one
can satisfy (42) in two ways: (i) f∗π = fπ = const and the
threshold position W ∗20 ∝ m∗2π , or (ii) the fixed threshold
W ∗0 = W0 = const ∼ 1 GeV and (40) is consistent with
for f∗π ∝ κ(ρ)

We must also make assumptions on in-medium value
of the ∆-isobar mass. If (40) is true, the ∆-isobar–nucleon
mass splitting satisfies the relation

(m∗∆ −m∗)
(m∆ −m)

=
∆m∗

∆m
= α(ρ) =

1
β
.

However, if β = 1 (41) we come to ∆m∗ = ∆m.
The experimental situation with ∆-isobar mass in nu-

clear matter is not quite clear at the moment. On the one
hand, the total photon-nucleus cross section indicates that
the mass m∗∆ does not decrease in the medium [28], while
the nucleon mass m∗(ρ) diminishes with ρ. This means
that the splitting ∆m∗ increases (∆m∗ > ∆m), oppo-
site to the ρ − π mass splitting. This fact (if it does take
place) looks strange, since the two kinds of splitting are
caused by the same colour magnetic (spin-spin) quark-
quark interaction. On the other hand, the experimental
data for total pion-nucleus cross sections [29] are consis-
tent with the mass m∗∆ decreasing in the matter. As to
calculations, the description within the Skirmion model
[30] predicts that m∗∆ decreases in nuclear matter and
∆m∗ < ∆m. Equation ∆m∗ = ∆m is also true in Walecka
model, if AQM prediction for the scalar field-baryon cou-
pling gsNN = gs∆∆ is assumed.

Thus we expect that the phenomenological
parametrization,

∆m∗

∆m
=

1
β(ρ)

,

i.e. ∆m∗ = ∆m when β = 1 does not look too unlike.

5.2 A rejected scenario

Here we try the scaling, provided by (40), with α(ρ) given
by (37) and β = 1/α. We find the phase transition to take
place at the densities, about 2.5 times smaller than the
normal one, (pF ' 200 MeV).

The technical explanation is simple. Polarization oper-
ator given by (5,19,20,24-26), which is responsible for the
“pion condensation” singularity ωc(k), behaves as

Π ∝ m∗

f∗2π
∝ 1
κ(ρ)

∝ 1
α(ρ)

.

While the density ρ increases, the value of |κ(ρ)|
and that of α(ρ) become smaller. Polarization operator
increases and the “pion condensate” singularity ωc ap-
proaches the physical sheet at smaller pF . The nonlinear
pion contribution S(ρ) becomes very large and the whole
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value κ(ρ) tends to zero (dashed curves in Fig. 7). Also,
since Π ∝ 1/α(ρ) → ∞ when the value of κ(ρ) turns to
zero, we lose the solution of (33) for κ(ρ) (see Appendix
for details), which from now on becomes the complex one.

Since that, one has to deal with another phase of the
matter, with much smaller particle masses. The whole pic-
ture contradicts sharply to our knowledge about nuclei
and nuclear matter. Thus, we reject this scenario.

5.3 An accepted scenario

For β = 1 (41) the situation looks much better. Up to ρ '
2.5ρ0, we deal with a self-consistent solution of the system
(9). The value of quark condensate tends to zero, when
that of the density ρ increases, and we never reach either
the chiral symmetry restoration or “pion condensation”.

Self-consistent set of (9), is solved numerically using
the standard iteration procedure. Technically this means,
that calculation of κ(ρ) with vacuum parameters is fol-
lowed by calculation of α(ρ). In the next step we obtain in-
medium values of all the other parameters by using (40).
This enables us to obtain ΠN and Π∆ provided by (24)-
(27). In the end of the cycle substitution of these operators
into (13) for further integration provides a new value of
κ(ρ). Thus we come to a new cycle.

The validity of our calculations for the larger values
of ρ is limited by another phase transition. At some value
of Fermi momentum (pF∆ ∝ ρ

1/3
∆ ), the total energy of a

nucleon on Fermi surface becomes larger than the energy
of the ∆-isobar at rest, i.e. E∆(0) ≤ EN (pF ). Thus, the
isobars starts to be accumulated by the ground state of
nuclear matter. This effect, as well as possible appearance
of other types of baryons, can be taken into account in
our scheme. Thus our calculations are reliable below pF ,
corresponding to this phase transition. We mark the cor-
responding points by the black circles on the curves shown
in Figs. 6, 7.

From the technical point of view, the effect of insta-
bility with respect to the ∆-isobar accumulation in the
ground state reveals itself in the fact that the branching
points (left edge of the right ∆-hole cut (with Im ω < 0)
and right edge of the left ∆-hole cut (see Fig. 3)) cross
the vertical axis Im ω=0. And two ∆-hole cuts start to
deform, i.e. to cross or to pinch (for Γ∆=0) the integration
contour in the ω-plane (13).

The possibility for other, but nucleons, types of
baryons to be contained in the nuclear-matter ground
state was discussed in [17]. The case of ∆-isobar in the
presence of a pion condensate was considered in [31], [32];
the problem without the π-condensation was studied in
terms of Walecka model in [33], [34].

The results plotted in Fig. 6a (in terms of κ(ρ)) and
Fig. 6b (in terms of m∗(ρ)) do not change too much un-
der reasonable variations of the TFFS couplings. Instead
of g′NN=1.0 in the master version (solid curve), in Fig.
6 we put g′NN=0.7 (dot-dashed curve); for dotted curve
g′∆∆=1.2 instead of 0.8; for dashed curve f∆/N=1.7 in-
stead of 2.0. In all calculations in this Section we have
used Γ∆=0.

Fig. 6.a,b. Self-consistent results for the q̄q expectation value
κ(ρ)/|κ(0)| = 〈M |q̄q|M〉/|κ(0)| (2.1) and m∗(ρ)/m in nuclear
matter, a Dependence of κ(ρ)/|κ(0)| on the variation of nuclear
parameters. Scaling functions are β = 1, α = κ(ρ)/κ(0). Solid
curve is the main result obtained with g′NN = 1.0, g′N∆ = 0.2,
g′∆∆ = 0.8, fπN∆ = 2.0. Dashed curve corresponds to the cal-
culation with fπN∆=1.7, dotted one to g′∆∆ = 1.2, dot-dashed
curve to g′NN=0.7, b Dependence of m∗(ρ)/m on the variation
of nuclear parameters. Notation of curves are the same as in
Fig. 6a. Straight line is drawn for the limit values of m∗/m
(see the end of Sect. 5). Corresponding reliability limits for the
calculation of κ/κ(0) are marked by black points

The lower solid line in Fig. 6b (and Fig. 7b) is drawn
for the limit values of m∗/m at every value pF . If the ratio
m∗/m is smaller than the limit value, the ground state of
nuclear matter contains isobars. The equation for this line
is determined by the condition that the isobar logarithmic
cut (31) of the polarization operator Π0

∆ (20) touches the
vertical axis Im ω = 0 see (Fig. 3).

In Fig. 7 we demonstrate the dependence of the value
of the scalar condensate on the type of the scaling function
α(ρ). Solid curve corresponds to the master version, with
α(ρ) given by (37) and β = 1. Two other parametrizations,
provided by (38), (39) shown by dotted and dot-dashed
curves. The results, corresponding to the law, described by
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Fig. 7.a,b. Self-consistent results for κ(ρ)/|κ(0)| and m∗(ρ)/m
in the nuclear matter, a Dependence of κ(ρ)/|κ(0) on the type
of scaling functions α(ρ), β(ρ). Solid curve displays the main
result obtained with β=1, α is calculated by (37). Long-dashed
curve corresponds to the gas approximation given by (1). For
dotted curve β = 1, α is taken from (38). For dot-dashed curve
β = 1, α is taken from (39). Dashed curve corresponds to the
Brown-Rho scaling: β = 1/α, α = κ(ρ)/κ(0) (40), b Depen-
dence of m∗(ρ)/m on the kind of scaling functions. Notations
of the curves are the same as in Fig. 7a. Straight line is drawn
for the limit values of m∗(ρ)/m (see the end of Sect. 5). Cor-
responding reliability limits for the calculation of κ/κ(0) are
marked by black points

(38), differ quantitatively from the two others. However,
as we said earlier, the latter are better based.

6 Account of relativistic kinematics

At moderate densities of about twice the normal value,
the value of effective mass m∗ becomes comparable with
that of Fermi momentum. Thus, one cannot neglect the
relativistic effects any more. We take into account rela-
tivistic kinematics by using relativistic expression for the
energies εk =

√
(m∗2 + k2) in all the formulae. However,

we still omit the baryon-antibaryon pair contributions.

In terms of traditional perturbative theory, (21)–(23)
should be replaced now by:

Φ(ω, k) = Φ
(1)
N (ω, k)θ(pF − k)

+Φ
(2)
N (ω, k)θ(2pF − k)θ(k − pF )

+Φ
(3)
N (ω, k)θ(k − 2pF ); (43)

Φ
(1)
N (ω, k) =

∫ pF

pF−k
dpA(ω, k),

Φ
(2)
N (ω, k) =

∫ pF

k−pF
dpA(ω, k) +

∫ k−pF

0

dpB(ω, k),

Φ
(3)
N (ω, k) =

∫ pF

0

dpB(ω, k),

where

A(ω, k) =
p

4π2

m∗

k

m∗√
(p2 +m∗2)

(44)

× ln

( √
(p2
F +m∗2)− ω −

√
(p2 +m∗2)√

((p+ k)2 +m∗2)− ω −
√

(p2 +m∗2)

)
,

B(ω, k) =
p

4π2

m∗

k

m∗√
(p2 +m∗2)

(45)

× ln

(√
((p− k)2 +m∗2)− ω −

√
(p2 +m∗2)√

((p+ k)2 +m∗2)− ω −
√

(p2 +m∗2)

)
;

Φ∆(ω, k) =
∫ pF

0

p

4π2

m∗

k

(m∗ +m∗∆)
2
√

(p2 +m∗2)
(46)

× ln

(√
((p− k)2 +m∗2∆ )−ω−

√
(p2 +m∗2)√

((p+ k)2 +m∗2∆ )−ω−
√

(p2 +m∗2)

)
.

By using these relativistic expression, we can extend the
self-consistent calculation up to ρ ' 2.8ρ0. The limit is
still determined by transition to the isobar accumulation
phase. The results of calculation of the scalar condensate
for the three considered possibilities of dependence of the
effective mass on κ are presented in Fig. 8. In the QCD
sum rules motivated parametrization, described by (39)
with β = 1, we find m∗/m = 0.67 at normal nuclear den-
sity ρ = ρ0. We have m∗/m = 0.6 in parametrization (37)
with β = 1. The values are in good agreement with the
one, obtained recently in framework of QHD [35].

7 Summary

Since the gas approximation equation for the quark con-
densate κ(ρ) was presented in [1], the nonlinear contri-
bution S(ρ) was considered in a number of papers. The
analysis of M.Ericson et al. [7], [8] was based on the
general properties of the πN scattering amplitude and its
generalization for the case of nuclear medium. As usually,



184 E.G.Drukarev et al.: Self-consistent treatment of the quark condensate and hadrons in nuclear matter

Fig. 8.a,b. Self-consistent results for κ(ρ)/|κ(0)| and m∗(ρ)/m
with relativistic corrections, a Dashed curve for κ(ρ)/|κ(0)| is
calculated with relativistic corrections (Sect. 6) and β = 1, and
α = κ/κ(0), (37). Dotted curve: β = 1, and α is taken from
(38). Dot-dashed curve: β = 1, and α taken from (39). Solid
curve represents the main result (β = 1, α = κ/κ(0), (37))
without relativistic corrections, b The results for m∗(ρ)/m cal-
culated with relativistic corrections. Notations are the same as
in Fig. 8a. Straight line restricts acceptable values of m∗/m
from below, it is obtained using the same method as described
above (see the end of Sect. 5) but with the isobar polarization
operator, (46). Corresponding reliability limits for the calcula-
tion of κ/κ(0) are marked by black points

some uncertainties come from the fact that one deals with
the off-mass-shell amplitude. Thus, certain assumptions
about the NN -interaction and on ρ-dependence of the ef-
fective pion mass m∗π in medium are needed.

Another group of papers [3], [4], [8] was based on
NJL-model. However, in this case they discussed not the
nuclear (build up of the hadrons) medium but the quark
one (the quark plasma). In such approach the pion con-
stant f∗π tends to zero, while the mass m∗π → ∞ near
the point of chiral invariance restoration. As we discuss in
Sect. 5, this looks unlikely for the real nuclear matter.

Our approach is based on using the exact pion propa-
gator, renormalized in nuclear medium by the insertions of
the nucleon-hole and ∆-hole loops. The short-range corre-

lations are accounted for by methods of TFFS. The lowest
laying singularity in ρ corresponding to the so-called “pion
condensation” is included. We carried out self-consistent
calculations with the quark condensate κ(ρ) depending
on the effective mass m∗(ρ), while the mass m∗(ρ) itself
is determined by (or strongly depends on) κ(ρ). Nonlinear
ρ-dependence of κ is obtained by calculation of the dia-
gram, shown in Fig. 1. Calculations include the in-medium
values of nucleon, isobar and pions masses and other pa-
rameters (f∗π , g

∗
A, g

′..). On the other hand, QCD sum rules
and NJL-model give the relations between masses and
quark condensates which can be used to determine the
in-medium masses and parameters, if κ(ρ) is known. This
enabled us to solve the set of equations (9).

It should be emphasized that, since the dependence
of m∗(ρ, κ(ρ)) on κ(ρ) was treated self-consistently, the
“pion condensation” singularity was pushed out from the
physical sheet. The only effect which can limit the valid-
ity of our calculations at large densities is the accumula-
tion of isobars in the ground state of nuclear matter at
ρ ' 2.8ρ0. In the general case one should include the pos-
sible accumulation of hyperons. To understand, which of
the condensates appears earlier, one should have better
knowledge of hyperon interactions with matter. Analysis
of the problem was started by Pandharipande [17]. This
goes beyond the scope of our paper.

At small densities the nonlinear term S(ρ) diminishes
the absolute value of κ(ρ) in comparison with the gas ap-
proximation ( the tendency which was already noted in
[11] for very low ρ). In our self-consistent approach such
behaviour continues up to ρ ' 2.0ρ0.

Taking relativistic kinematics into account, we have
calculated the expectation values of scalar quark conden-
sate in the symmetric nuclear matter up to ρ ' 2.8ρ0,
where κ reaches the value κ(2.8ρ0) ' 0.1κ(0). At normal
nuclear density ρ = ρ0 = 0.17 fm−3, we obtain κ(ρ0) '
0.6κ(0) and the effective nucleon mass m∗(ρ0) ' 0.6m.
The latter result is very close to the value used nowadays
in QHD [35] to describe the properties of nuclei.

We are grateful to A.A.Anselm, I.B.Khriplovich, G.Z.Obrant
and M.Rho for useful discussions. This work was supported by
the Russian Fund of Fundamental Research, Grant No. 96-15-
96764.

Appendix

To clarify what happens in the case of scaling, described
by (40) we omit dependence of polarization operator on
pion momentum k using the mean value of polarization
operator Π instead. The quark condensate |κ(ρ)| obtained
in such a way is plotted in Fig. 9 as a function of Π for
two values of density. One can see the dependence to be
a monotonous one. The curves A1 and B1, calculated for
ρ = ρA and for ρ = ρB > ρA are shown as A1 and B1 in
Fig. 9. At some value Π = Πc, when the “pion condensa-
tion” singularity ωc comes the physical sheet, the function
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Fig. 9.a,b. The graphical solution of the system of equations
(47) and (48), a The curves A1 and A2 are plotted for the
equations (47) and (48), correspondingly, at certain small den-
sity ρA. The crossing points 1 and 2 are the two solutions of
a system of equations. Dashed curves B1 and B2 correspond
to the density value ρB > ρA. There is no solution in the lat-
ter case, b Graphical solution of the set of equations (47) and
(48), when baryon radius obeys the scaling equation (40). Solid
curves A1 and A2 are plotted for (47) and (48), correspond-
ingly, at small ρA. There are three crossing points for solid
lines, which are the three solutions of the system. Curves B1
and B2 are calculated at ρ = ρB , ρB > ρA. In this case only
one solution survives. We denoted κ0 = |κ(0)|

κ(ρ,Πc)→ ∞. While both second and third terms of (2)
increase with ρ (for S(ρ) an extra multiplicative factor ρ
comes from the integral over the nucleon momenta), the
function κ(ρ,Π) becomes steeper for a larger density. To
find self-consistent solution in this simplified approxima-
tion, we have to solve the set of equations

κ = κ(ρ,Π), (47)

Π = Π(ρ, κ). (48)

We show the function Π(ρ, κ) by curves A2 and B2 in the
same figure. The crossing points of A1 and A2 (of B1 and
B2) provide the solution.

It was shown in Sect. 1.2 that the polarization operator
can be approximated as Π(κ, ρ) ∼ ρ1/3/κ. So Π →∞ at
κ→ 0 and the mean value of Π increases with ρ.

At low densities, there are two solutions: point 1 and
point 2, where the curves A1 and A2 cross. For ρ → 0
the first one (κ1 in point 1) matches smoothly with the
solution of NJL gap equation in vacuum: κ1 → κ(0) when
ρ→ 0. When the density ρ increases the solutions 1 and 2
draw nearer, merge with each other (at some ρ = ρc) and
go out into the complex plane. In this way we lose the real
solution at ρ > ρc.

Assuming that the baryon radius (i.e. parameter Λ in
the form factors dN , d∆ (see (14)) follows the same scaling
law (Λ∗/Λ = f∗π/fπ = ...), one obtains more complicated
function Π(κ) shown in Fig. 9b. Now for a very small κ the
form factors dN ,d∆ cut off the integral in the right hand
side of (13) at k ∼ Λ << pF . Therefore, the effective po-
larization operator Π(κ) reaches its maximum value and
falls down when κ → 0, proving us with the third solu-
tion with a very small quark condensate |κ| = κ3 and
thus with very small values of hadron masses. This so-
lution does not disappear even at very large densities ρ.
On the other hand, for the third solution somewhere at
α = κ3/κ(0) ≤ 0.25 the pion mass

m∗2π = m2
π

κ(0))
κ3

∝ 1
κ3

becomes larger the nucleon mass

m∗ = m
κ3

|κ(0)| ∝ κ3,

and we cannot any more apply our approach, based on the
summation of a selected set of Feynman diagrams corre-
sponding to the lightest pion degrees of freedom.

In any case, at ρ ≥ ρc we lose the primary real solution
1 and face a first order phase transition (mass of a hadron
has a discontinuity) which looks rather strange.
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